

Journal of Organometallic Chemistry 506 (1996) 337-338

Preliminary communication

High α -regioselectivity in the rhodium-catalyzed hydroformylation of vinylpyrroles

Roberta Settambolo ^a, Aldo Caiazzo ^b, Raffaello Lazzaroni ^b

^a Istituto di Chimica Quantistica ed Energetica Molecolare del CNR per le Macromolecole Stereordinate ed Otticamente Attive,

Dipartimento di Chimica e Chimica Industriale, via Risorgimento 35, 56126 Pisa, Italy

^b Centro di Studio del CNR per le Macromolecole Stereordinate ed Otticamente Attive, Dipartimento di Chimica e Chimica Industriale, via Risorgimento 35, 56126 Pisa, Italy

Received 29 June 1995

Abstract

The $Rh_4(CO)_{12}$ -catalyzed hydroformylation at low temperature (40 °C) of the 1-, 2- and 3-vinylpyrrole gives the corresponding branched aldehydes 2-(1-pyrrolyl)propanal, 2-(2-pyrrolyl)propanal and 2-(3-pyrrolyl)propanal with high α -regioselectivity.

Keywords: Hydroformylation, 3-vinylpyrrole, 2-(3-pyrrolyl)propanal; Rhodium; Catalysis

The hydroformylation of functionalized unsaturated substrates is a very interesting topic in terms of synthetic utility [1] as well as mechanistic aspects [2]. To date, however, relatively few approaches to the oxo-reaction of vinyl heteroaromatic compounds have been documented [3–6]. Recently we reported [7] that the rhodium-catalyzed hydroformylation of 2-vinylpyridine and 4-vinylpyridine, in the presence of a suitable catalytic system, selectively gives the branched aldehydes, i.e. 2-(pyridyl)propanals, in good yield and with remarkable α -regioselectivity (99%). We report here the hydroformylation of another class of heteroaromatic substrates, i.e. the 1-, 2- and 3-vinylpyrroles, in order to investigate the influence of the π -excessive ring on the chemo- and regioselectivity of the reaction.

We found that at 40 °C, in the presence of $Rh_4(CO)_{12}$ as catalytic precursor, the hydroformylation of 3-vinylpyrrole (1a) [8], 2-vinylpyrrole (1b) [9] and 1-vinylpyrrole (1c) [10] gives the isomeric aldehydes 2 and 3 in moderate to good yield, the branched isomer 2 predominating (Scheme 1).

A solution of 1 (5.4 mmol), $Rh_4(CO)_{12} (2.7 \times 10^{-2} mmol)$ in benzene (5 ml) was introduced by suction into a 25 ml evacuated stainless steel autoclave. Carbon monoxide and dihydrogen were introduced up to 120 atm total pressure (CO/H₂ = 1:1) and then the autoclave was rocked at 40 °C (24 h for **1a**; 44 h for **1b**; 36

h for 1c). GC and GC-MS analysis of the reaction mixtures showed that the conversion was complete. In all three cases, high α -regioselectivity was observed; the regioisomeric ratios were 94:6 (2a/3a and 2b/3b) for 3- and 2-vinylpyrrole and 97:3 (2c/3c) for 1vinylpyrrole [11]. In the case of 1a, the hydrogenation product 3-ethylpyrrole was also present (< 2%). A small amount of 2-(1-pyrrolyl)propanol, the reduction product of 2c, was found in the case of the hydroformylation of 1c. The formation of some polymeric material was observed in the hydroformylation of 1b [12].

Chemically pure 2-(3-pyrrolyl)propanal and 2-(1-pyrrolyl)propanal were obtained by elution on column chromatography (silica gel, hexane/ethyl acetate (3:1)) (2a) and fractional distillation of the corresponding crude reaction mixtures (2c) respectively. In the case of 2-vinylpyrrole (1b) the branched aldehyde 2b was recovered in the presence of the linear one 3b by rapid elution of the hydroformylation product on a very short column of silica gel (pentane/ethyl acetate (3:1)). The characteristic ¹H NMR resonances of the above aldehydes are reported in Table 1.

The above findings clearly point out that the hydroformylation of the vinylpyrroles occurs with high α -regioselectivity similar to that observed for styrene [13] in analogous experimental conditions (branched : linear aldehyde = 97:3 at 40 °C).

Table 1

Characteristic proton chemical shifts ^a of the branched aldehydes 2 CH(c)

	LH 	₃ (c)
z′	к н (л)	CHO (b)
	(a)	(0)

compound	chemical s	chemical shifts (ppm)		
	H(a)	H(b)	H(c)	
2a	3.50	9.52	1.29	
2b	3.62	9.54	1.43	
2c	4.58	9.59	1.63	

^a In ppm from internal TMS; CDCl₃ as solvent.

As previously shown by studies on the rhodiumcatalyzed deuterioformylation of styrene [14] and unsaturated ethers [15], the high α -regioselectivity of the reaction must be related to the regioselectivity of formation of the rhodium-alkyl intermediates (Scheme 2).

The polarizable pyrrole ring directly bonded to the partially negative carbon atom favours the branched isomer A over the linear alkyl B, thus explaining the predominance of the branched aldehyde. In accord with the above scheme, the greater electron-attracting ability of the pyridyl ring compared with that of the π -excessive pyrrole could account for the higher α -regioselectivity observed in the hydroformylation of 2-vinylpyridine (99:1) [7] with respect to 2-vinylpyrrole (94:6).

Scheme 2.

The influence of temperature and of gas pressure and the effect of different catalytic precursors, e.g. $[Rh(CO)_2Cl]_2/PPhMe_2$ and $RhH(CO)(PPh)_3$ on the regioselectivity in the hydroformylation of the vinylpyrroles isomers are now under investigation.

Acknowledgements

We wish to thank Mr. Carlo Barberini for excellent technical support in the construction of the 25 ml-reactor used in the oxo-reactions. Financial support by MPI (60%), Rome, is gratefully acknowledged.

References and notes

- (a) H.M. Colquhoun, J. Holton, D.J. Thompson and M.V. Twigg, New Pathways for Organic Synthesis, Plenum, New York (1984); (b) C. Botteghi, S. Paganelli, A. Schionato and M. Marchetti, Chirality, 3 (1991) 355.
- [2] (a) I. Ojima, Chem. Rev., 68 (1988) 1011; (b) A. Polo, C. Claver, S. Castillón, A. Ruiz, J.C. Bayón, J. Real, C. Mealli and D. Masi, Organometallics, 11 (1992) 3525; (c) C.P. Casey and L.M. Petrovich, J. Am. Chem. Soc., 117 (1995) 6007.
- [3] A. Alberola and M.F. Brana, An. Real Soc. Espan. Fis. Quim., Ser. B, 63 (1967) 683; Chem. Abstr., 67 (1967) 63939.
- [4] A.F. Browning, A.D. Bacon and C. White, J. Mol. Catal., 83 (1993) L11.
- [5] Y. Watanabe, T. Mitsudo, M. Tanaka, K. Yamamoto and Y. Takegami, Yukagaku, 23 (1974) 304; Chem. Abstr., 81 (1974) 24995.
- [6] (a) A.L. Lapidus, A.P. Rodin, I.G. Pruidze and B.I. Ugrak, *Izv. Akad. Nauk SSSr, Ser. Khim.*, 7 (1990) 1661, *Chem. Abstr.*, 113 (1990) 171816; (b) P. Kalck and F. Serein-Spiran, *New. J. Chem.*, 13 (1989) 515.
- [7] R. Settambolo, S. Pucci, S. Bertozzi and R. Lazzaroni, J. Organomet. Chem., 489 (1995) C50.
- [8] R. Settambolo, R. Lazzaroni, T. Messeri, M. Mazzetti and P. Salvadori, J. Org. Chem., 58 (1993) 7899.
- [9] (a) R.A. Jones and J.A. Lindner, Austr. J. Chem., 18 (1965) 875; (b) C. Finzi, J.E. Fernandez, M. Randazzo and L. Toppare, Macromolecules, 25 (1992) 245.
- [10] (a) W. Reppe, Ann, 601 (1956) 132; (b) O.A. Tarasova, A.G. Mal'Kina, A.I. Mikhaleva, L. Brandsma and B.A. Trofimov, Synth. Commun., 24 (1994) 2035.
- [11] These ratios were determined by gas chromatography on the product obtained from at least three runs and are accurate to within 0.5%.
- [12] The tendence to give polymeric material accounts for the low yield obtained in the synthesis of 1b.
- [13] R. Lazzaroni, A. Raffaelli, R. Settambolo, S. Bertozzi and G. Vitulli, J. Mol. Catal., 50 (1989) 1.
- [14] (a) R. Lazzaroni, R. Settambolo, A. Raffaelli, S. Pucci and G. Vitulli, J. Organomet. Chem., 339 (1988) 357; (b) G. Uccello-Barretta, R. Lazzaroni, R. Settambolo and P. Salvadori, J. Organomet. Chem., 417 (1991) 111.
- [15] R. Lazzaroni, R. Settambolo and G. Uccello-Barretta, *Organometallics*, in press.